NAMING IONIC AND COVALENT COMPOUNDS

Chemical Formulas

A chemical formula is a shorthand way of telling you The name of a compound What type of atoms are in the compound

How many of each element there are

How to read a formula

A chemical formula uses

- symbols for each element
- subscripts to tell you how many of each element there are.

Example:

If there is no subscript, you assume there is a "1" as the subscript (but you just don't write it in). N₁H₄

What's with the parentheses?

- If a chemical formula has parentheses in it then you have to remember to distribute the subscript to each element inside the parentheses.
- Example:

- There are Aluminum atoms
 - Sulfur atoms
 - Oxygen atoms

Practice Questions

 $CaBr_2$ Ca = Br =

$Cu(NO_3)_2$ Cu = N =

0 =

lonic or covalent?

- □ Cation & anion (usually metal & nonmetal) = ionic
- Non-metal and non-metal = covalent
- $\square N_2 O$ COVALENT

- $\Box C_2 H_6$ COVALENT
- \square (NH₄)₂CO₃

IONIC!!! Cation and anion – know your ions! NH₄⁺ CO₃²⁻ POLYATOMIC!

NAMING IONIC COMPOUNDS

Naming Ionic Compounds

Two types of ionic compounds BINARY

- Only TWO types of elements
 - NaCl
 - ■MgF₂

MORE than two <u>types</u> of elements
 Mg(OH)₂
 NH₄CI

Naming Binary Compounds

- Cation first, Anion Second
- Metal first, Non-metal Second
- □ IGNORE THE SUBSCRIPTS!
- Transition metals with more than one possible charge put the charge in parentheses with roman numerals Mn(IV)
- Cation same name as on periodic table
- Anion drop the ending and add -ide

NaCl

Sodium Chloride

See how it is chlor<u>ide</u> not chlor<u>ine</u>

Practice Naming Binary Compounds

Silver Chloride NOT CHLORINE

MgO

Magnesium Oxide NOT OXYGEN

Potassium Sulfide NOT SULFUR

Naming Polyatomic Ionic Compounds

- Cation First, Anion Second
- Both Cation and Anion keep their "fancy" names if polyatomic ions. If a normal atom then cation keeps normal name and anion changes to –ide just like binary.
- □ Mg(OH)₂ □ Magnesium Hydro
 - Magnesium Hydroxide
- (NH₄)(NO₃)
 Ammonium Nitrate

Practice Naming Ionic Compounds

 \square MnF₄

Manganese (IV) Fluoride

K(CN)Potassium Cyanide

NAMING COVALENT MOLECULES

JUST like ionic, but use prefixes

# of atoms	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

Put a prefix in front of the ion name (except if it is mono- for the first element, then just leave it off)

- $CF_4 = Carbon \underline{tetra} fluoride$
- $CO_2 = Carbon \underline{di}oxide$

$$N_2H_4 = \underline{Di}$$
nitrogen tetrahydride

 $N_2O_3 = \underline{Di}$ nitrogen <u>tri</u>oxide

 $N_2P = \underline{Di}$ nitrogen <u>mono</u>phosphide

Weird naming with double vowels

When (ao) or (oo) bump up against each other drop the first one

- NOT decAOxide ---- decoxide
- NOT monOOxide ---- monoxide
- NOT pentAOxide ---- pentoxide
- If there is an (i) present in the double vowel, leave it alone!
 - Hexaiodide is correct!!!
 - Diiodide is correct!!!
 - Dioxide is correct!!!
 - Trioxide is correct!!!

YouTube Link to Presentation

<u>https://youtu.be/t2EYd9j6ljM</u>